中文 | English
 
Prof. Bo-Zhong Mu

Bo-Zhong Mu  (牟伯中)

Professor

Head, the Institute of Applied Chemistry, ECUST

Director, the Engineering Research Center for Microbial Enhanced Oil Recovery, MOE, China

Editorial Board members of the International Biodeterioration & Biodegradation (Elsevier)

and Applied Environmental Biotechnology (Whioce)

Committee Members of the Chinese Chemical Society- Colloid and Interface Chemistry

and the Chinese Society for Microbiology-Geo-Microbiology


Contact Information

            No. 130 Meilong Road, Shanghai 200237, China

Office: Room 205, Researching Building No. 3

            Email: bzmu@ecust.edu.cn

            Lab Phone: +86 21 64252063

Links

https://orcid.org/0000-0002-9564-4970

https://chem.ecust.edu.cn/2014/1113/c6655a50045/page.htm


Education

1998.06, PhD, Southwest Petroleum University, Chengdu, China

1989.07, MSc, China Coal Research Institute, Xian, China

1982.07, BSc., Chengdu University of Technology, Chengdu, China


Research Interests

Prof. Mu’s Research interests focus on the chemical & biological fundamentals for enhanced oil recovery, including interfacial behavior & microbial transport in porous media, bio-based surfactants & their molecular aggregates, and molecular microbial community & biodegradation in petroleum reservoirs. His interests also lie in the extension of the research to application with industrial partners, covering MEOR, the methanegenic production from residue oil, and CO2 biotransformation & biofixation in situ oil reservoirs.


Professional Experiences

2001-now: Full professor, East China University of Science & Technology (Shanghai, China)

1998-2020: Postdoctoral Fellow, Ocean University of Qingdao (Qingdao, China) and the University of Wyoming (Wyoming, USA)

1982-1995: Research associate, China Coal Research Institute (Xian, China)


Group Members

Prof. Shi-Zhong Yang

Dr. Jin-Feng Liu

Dr. Hong-Ze Gang

Dr. Yi-Fan Liu

Dr. Lei Zhou


Selected peer-reviewed articles

Bio-surfactants & Bio-based Surfactants:

  1. Gang H-Z, He H, Yu Z-Q, Wang Z-Y, Liu J-F, He X-J, Bao X-N, Li Y-C* & Mu B-Z*. A coarse-grained model for microbial lipopeptide surfactin and its application in self-assembly. J Phys Chem B, 2020, 124: 1839-1846

  2. Gang H-Z, Galvagnion C, Müller T, Buell A K, Levin A, Dobson C M*, Mu B-Z*& Knowles TPJ*. Characterisation of the interactions between α-synuclein and lipid vesicles under native conditions from microfluidic measurements of molecular diffusivity. Anal Chem, 2018, 90:3284-3290

  3. Gang H-Z, Liu J-F & Mu B-Z*. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: a molecular dynamics simulation study. BBA - Biomembranes, 2015, 1848:1955-1962

  4. She A-Q, Gang H-Z & Mu B-Z*. Temperature influence on the structure and interfacial properties of surfactin micelle: a molecular dynamics simulation study. J Phys Chem B, 2012, 116: 12735-12743

  5. Gang H-Z, Liu J-F & Mu B-Z*. Molecular dynamics study of surfactin monolayer at the air/water interface. J Phys Chem B, 2011, 115: 12770-12777  

  6. Gang H-Z, Liu J-F & Mu B-Z*. Interfacial behavior of surfactin at the decane/water interface: a molecular dynamics simulation. J Phys Chem B, 2010, 114: 14947-14954

  7. Gang H-Z, Liu J-F & Mu B-Z*. Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. J Phys Chem B, 2010, 114: 2728-2737

  8. Zou A-H, Liu J, Garamus V, Yang Y, Willumeit Regine & Mu B-Z*. Micellization activity of the natural lipopeptide, [Glu1, Asp5] surfactin-C15 in aqueous solution. J Phys Chem B, 2010,114: 2712–2718

  9. Liu X-Y, Tao X-Y, Zou A-H, Yang S-Z, Zhang L-X* & Mu B-Z*. Effect of a microbial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein & Cell, 2010,1(6): 584-594

  10. Li Y, Zou A-H, Ye R-Q & Mu B-Z*. Counterion-induced changes to the micellization of surfactin-C16 aqueous solution. J Phys Chem B, 2009, 113: 15272 -15277

Biodegradation of Hydrocarbons in Depleted Oil Reservoirs:

  1. Liu Y-F, Chen J, Liu Z-L, ShouL-B, Lin D-D, Zhou L, Yang S-Z, Liu J-F, Li W, Gu J-D & Mu B-Z*. Anaerobic degradation of paraffins by a novel class-level lineage of syntrophic Actinobacteria under methanogenic condition. Environ Sci & Technol, 2020, 54:10610-10620

  2. Liu Y-F, Chen J, Zaramela L, Wang L-Y, Mbadinga MS, Hou Z-W, Wu X-L, Gu J-D Zengler K* & Mu B-Z*. Genomic and transcriptomic evidence supports methane metabolism in Archaeoglobi. mSystems, 2020, 5,19

  3. Liu Y-F, Qi Z-Z, Shou L-B, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’ (JS1) inferred from genomics. ISEM J, 2019, 13: 2377–2390

  4. Ji J-H, Liu Y-F, Zhou L, Mbadinga SM, Pan P, Chen J, Liu J-F, Yang S-Z, Sand W, Gu J-D* & Mu B-Z*. Evidences for the initial activation by fumarate addition mechanism in methanogenic degradation of long n-alkanes, Appl Environ Microbiol 85, 2019, e00985-19

  5. Chen J, Liu Y-F, Zhou L, Mbadinga SM, Yang T, Zhou J, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotech, 2019, 103:2391–2401

  6. Liu Y-F, Galzerani D D, Mbadinga S M, Zaramela LS, Gu J-D Mu B-Z* & Zengler K*. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome, 2018, 6:5

  7. Pan P, Hong B, Mbadinga SM, Wang L-Y, Liu J-F, Yang S-Z, Gu J-D & Mu BZ*. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Appl Microbiol Biotech, 2017,101: 7053-7063

  8. Li C-Y, Zhang D, Li X-X, Mbadinga SM, Yang S-Z, Liu J-F, Gu J-D & Mu B-Z*. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. Journal of Hazardous Materials, 2016, 304: 388–399

  9. Mbadinga SM, Li K-P, Zhou L, Wang L-Y, Yang S-Z, Liu J-F, Gu J-D & Mu B-Z*. Analysis of alkane-dependent methanogenic community derived from production water of high temperature petroleum reservoir. Appl Microbiol Biotech, 2012, 96:531-42

  10. Wang L-Y, Li W, Mbadinga SM, Liu J-F, Gu J-D & Mu B-Z*. Microbial community shift correlated with the carbon available enriched from an oily sludge over 500 days of methanogenic incubation. Geomicrobiol J, 2012, 29:716-726

Biotransformation of CO2 in Petroleum Reservoirs & CCUS:

  1. Liang T-T, Zhou L, Irfan M, Bai Y, Liu X-Z, Zhang J-L Wu Z-Y Wang W-Z Liu J-F Cheng L, Yang S-Z, Ye R-Q, Gu J-D & Mu B-Z*. Assessment of five electron shuttling molecules in extracellular electron transfer of electromethanogenesis by Methanosarcina barkeri. ChemElectroChem, 2020, 7: 3783-3789

  2. Bai Y, Zhou L, Irfan M, Liang T-T, Cheng L, Liu Y-F, Liu J-F, Yang S-Z, Sand W, Gu J-D & Mu B-Z*. Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron transfer. Energy, 2020, 210,118455

  3. Yuan S, Gang H-Z, Zhou L, Liang T-T, Irfan M, Kazmi M, Liu J-F, Yang S-Z & Mu B-Z*. Insight into the Adsorption Mechanism of CO2, CH4, and their Mixtures on Kerogen Type IIIA, Energy & Fuels, 2020, 34: 14300-14311

  4. Irfan M, Zhou L, Ji J-H, Chen J, Yuan S, Liang T-T, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals. RenewableEnergy, 2020,159:585-594

  5. Irfan M, Zhou L, Ji J-H, Yuan S, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Energy recovery from the carbon dioxide for green and sustainable environment using iron minerals as electron donor. J Clean Prod, 2020, 277, 124134

  6. Irfan M, Zhou L, Bai Y, Yuan S, Liang T-T, Liu Y-F, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z *. Insights into the H2 generation from water-iron rock reactions at low temperature and the key limiting factors in the process. Int’l J Hydrogen Energy, 2019, 44: 18007-180018

  7. Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Mbadinga SM, Yang S-Z, Jin Liu F, Sand W, Gu J-D & Mu B-Z*. Direct microbial transformation of of CO2 to value-added chemicals: A comprehensive analysis and application potentials, Bioresource Technology, 2019, 288:121401

  8. Ma L, Zhou, Ruan M-Y, Gu J-D & Mu B-Z*. Simultaneous methanogenesis and acetogenesis from CO2 by enrichment cocultures supplemented with ZVI, Renewable Energy, 2019, 132:861-870

  9. Ma L, Zhou L, Mbadinga SM, Gu J-D & Mu B-Z*. Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy, 2018, 147:663-671

  10. Yang G-C, Zhou L, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Formate-dependent microbial conversion of CO2 and the dominant pathways of Methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate. Front Microbiol, 2016, 7, 365

Microbiologically Influenced Corrosion (MIC) in Oil Fields:

  1. Zhou L, Wang D-W, Zhang S-L, Tang E-G, Lu Y-W, Jing Y-F, Lin D-D, Liu Z-L, Liu J-F, Yang S-Z, Zhang J*, Gu J-D & Mu B-Z*. Functional microorganisms involved in the sulfur and nitrogen 2 metabolism in production water from a high-temperature offshore 3 petroleum reservoir. IBB, 2020, 154,105057

  2. Li X-X, Yang T, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front Microbiol, 2017, 8,2379

  3. Li X-X, Liu J-F, Zhou L, Mbadinga S M, Yang S-Z, Gu J-D & Mu B-Z*. Diversity and composition of sulfate-reducing microbial communities based on genomic DNA and RNA transcription in production water of a high temperature and corrosive oil reservoir. Front Microbiol, 2017, 8, 1011

  4. Li X-X, Mbadinga SM , Liu J-F, Zhou L, Yang S-Z, Gu J-D & Mu B-Z*. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. IBB, 2017, 120 170-185

  5. Li C-Y, Hu H, Feng J-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Diversity and abundance of ammonia-oxidizing bacteria (AOB) revealed by amoA gene in a polyacrylamide transportation system of an oil field. IBB, 2016, 115:110-118

  6. Li X-X, Liu J-F, Yang S-Z, Mbadinga SM, Gu J-D & Mu B-Z*. Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. IBB, 2016, 114: 45-56

  7. Guan J, Zhang B-L, Mbadinga S M, Liu J-F, Gu J-D & Mu B-Z*. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl Microbiol Biotech, 2014, 98:1871-1882

  8. Guan J, Xia L-P, Wang L-Y, Liu J-F, Gu G-D & Mu B-Z*. Diversity and distribution of sulfate- reducing bacterial communities in four different petroleum reservoirs using 16S rRNA gene from nested PCR and dsrAB gene. IBB, 2013, 76:58-66

  9. Li W, Wang L-Y, Duan R-Y, Liu J-F, Gu G-D & Mu B-Z*. Microbial community composition in n-alkanes -amended enrichment cultures of nitrate-reducing, sulfate-reducing and methanogenic conditions from production water of a mesophilic petroleum reservoir. IBB, 2012, 69: 87-96

  10. Feng W-W, Liu J-F, Gu G-D & Mu B-Z*. Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase gene (napA). IBB, 2011, 65 :1081- 1086

Microbial Communities in Petroleum Reservoirs & Enhanced Energy Recovery:

  1. Liu J-F, Feng J-Y, Yang S-Z, Gang H-Z & Mu B-Z*. The recovery of viscosity of HPAM solution in presence of high concentration sulfide ions. J Petrol Sci Eng, 2020, 195,107605

  2. Zhou Z-C, Liang B, Wang L-Y, Liu JF, Mu B-Z*, Shim H & Gu J-D*. Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China. Biogeosciences, 2019,16:4229-4241

  3. Liu J-F, Feng J-Y, Hu H, Li C-Y, Yang S-Z, Gu J-D & Mu B-Z*. Decrease in viscosity of partially hydrolyzed polyacrylamide solution caused by the interaction between sulfide ion and amide group, J Petrol Sci Eng, 2018, 170: 738-743

  4. Liang B, Zhang K, Wang L-Y, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Insight into archaeal communities in the aqueous and oil phases of production fluid from a high-temperature petroleum reservoir. Front Microbiol, 2018, 9, 841

  5. You J, Wu G, Ren F-P, Qi C, Yu B*, Xue Y-F & Mu B-Z*. Microbial community dynamics in Baolige oilfield during MEOR treatment revealed by Illumina MiSeq sequencing,  Appl Microbiol Biotech, 2016, 100: 1469 -1478

  6. Wang L-Y, Sun X-B, Liu J-F, Gu J-D & Mu B-Z*. Comparison of bacterial community in aqueous and oil phases of the water-flooded petroleum reservoir using Pyrosequencing and clone library approaches. Appl Microbiol Biotech, 2014, 98:4209-4221

  7. Wang L-Y, Duan R-Y, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences, 2012, 9: 4645-4659

  8. Li H, Yang S-Z & Mu B-Z*, et al. Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS microbiol ecol, 2007, 60: 74-84

  9. Li H, Yang S-Z & Mu B-Z*, et al. Molecular analysis of bacterial community structure in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett, 2006, 257: 92-98

  10. Liu J-F, Ma L-J & Mu B-Z*, et al. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J Petrol Sci Eng, 2005, 48:265-271


网页发布时间: 2021-03-15 14:14