
戴升 教授 博士生导师
电子邮箱:shengdai@ecust.edu.cn
个人主页:http://shengdai.ecust.edu.cn
办公地址:上海市徐汇区梅陇路130号 华东理工大学 五教205
招生方向:应用化学、材料科学与工程
教育背景:
2005.09—2009.07 清华大学 材料科学与工程系 学士
2009.09—2014.07 清华大学 材料科学与工程系 博士 (导师:朱静院士)
工作经历:
2014.11—2016.06 密歇根大学 材料科学与工程系 博士后 (合作导师:Xiaoqing Pan教授)
2016.07—2019.03 加州大学尔湾分校 材料与化工系 博士后 (合作导师:Xiaoqing Pan教授)
2019.04—2021.08 华东理工大学 化学与分子工程学院 特聘研究员
2021.09 至今 华东理工大学 化学与分子工程学院 教授
研究方向:
戴升教授课题组(ISTEM Group)致力于先进催化剂的精准结构与构效关系研究。运用原位电子显微镜表征技术,在原子尺度探究用于工业催化、能源催化与环境催化的催化剂的结构特征与动态演化规律,从而解析催化剂的活性位点与反应机理,明确构效关系。主要研究方向包括:
1. 原位催化反应中催化剂动态过程的原子尺度研究。
2. 电子束敏感催化剂(分子筛、COF/MOF基)的精准结构解析。
3. 先进能源催化剂(HER、ORR、CO2RR等)的构效关系研究。
4. 多场耦合原位电镜设备与技术的研发。
戴升教授目前已发表论文100余篇,以第一/通讯作者(共同)身份发表论文50余篇,包括Nat. Mater., Nat. Catal., Nat. Commun., PNAS, J. Am. Chem. Soc., Adv. Mater., Chem, Nano Lett.等。课题组依托华东理工大学“费林加诺贝尔奖科学家联合研究中心”,拥有国际领先的双球差透射电镜、环境透射电镜及多种原位电镜设备。欢迎应用化学和材料科学与工程等方向的研究生加入本课题组;同时欢迎化学、化工、材料等专业的本科生来课题组交流学习。课题组长期招聘电子显微学方向的博士后。

社会兼职:
担任Chinese Journal of Chemistry期刊青年编委、上海技术交易所智库专家等社会兼职。
个人荣誉:
曾获得“教育部博士研究生学术新人奖”、北京市优秀毕业生、清华大学优秀博士学位论文等荣誉奖励。
主要项目:
作为负责人主持 国家海外高层次人才计划、上海市高校特聘教授、上海市海外高层次人才计划、上海市“青年科技启明星”计划、上海市自然科学基金等科研项目。


代表论文:
1. Z. Wang#, C. Dong#, X. Tang#, X Qin, X. Liu, M. Peng, Y. Xu, C. Song, J. Zhang, X. Liang, S. Dai*, D. Ma*. CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen. Nat. Commun.2022, 13: 4404.
2. J. Xu#, G. Shao#, X. Tang#, F. Lv, H. Xiang, C. Jing, S. Liu*, S. Dai*, Y. Li*, J. Luo*, Z. Zhou. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun.2022, 13: 2193.
3. C. Zhu#, L. Zhou#, Z. Zhang#, C. Yang, G. Shi, S. Zhao, H. Gu, J. Wu, X. Gao, Y. Li, K. Liu*, S. Dai*, L. Zhang*.Dynamic restructuring of epitaxial Au–Cu biphasic interface for tandem CO2-to-C2+ alcohols conversion. Chem 2022, 8: 1–14.
4. J. Xu#, H. Xu#, A. Dong#, H. Zhang*, Y. Zhou, H. Dong, B. Tang, Y. Liu, L. Zhang, X. Liu, J. Luo, L. Bie, S. Dai*, Y. Wang*, X. Sun, and Y. Li*. Strong electronic metal–support interaction between Iridium single atoms and a WO3 support promotes highly efficient and robust CO2 cycloaddition. Adv. Mater. 2022, 2206991.
5. Y. Jia, T.-H. Huang, S. Lin, L. Guo, Y.-M. Yu, J.-H. Wang, K.-W. Wang*, S. Dai*. Stable Pd−Cu hydride catalyst for efficient hydrogen evolution. Nano Lett. 2022, 22, 1391−1397.
6. Q. Yang#, Y. Wang#, X. Tang#, Q. Zhang, S. Dai*, H. Peng, Y. Lin, Z. Tian, Z. Lu*, L. Chen*. Ligand defect density regulation in metal−organic frameworks by functional group engineering on linkers. Nano Lett. 2022, 22, 838−845.
7. Y. Jiang, T.-W. Huang, H.-L. Chou, L. Zhou, S.-W. Lee, K.-W. Wang*, S. Dai*.Revealing and magnifying interfacial effects between Ruthenium and carbon supports for efficient hydrogen evolution. J. Mater. Chem. A 2022, 10, 17730.
8. T. Pu#, J. Ding#, X. Tang#, K. Yang, K. Wang, B. Huang, S. Dai*, Y. He, Y. Shi, P. Xie*. Rational design of precious-metal single-atom catalysts for methane combustion. ACS Appl. Mater. Interfaces 2022, 14, 43141−43150.
9. D. Li#, F. Xu#, X. Tang#, S. Dai#, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu*, I. E. Wachs*, M. Zhu*. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol.Nat. Catal.2022, 5, 99-108.
10. S. Dai, T.-H. Huang, W.-I. Liu, C.-W. Hsu, S.-W. Lee, T.-Y. Chen,* Y.-C. Wang, J.-H. Wang*, K.-W. Wang*. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency.Nano Lett. 2021, 21, 9293−9300.
11. J. Zhu#, L. Zhou#, Y. Zhu,* J. Huang, L. Hou, J. Shen, S. Dai*, C. Li*. Stable bismuth-doped lead halide perovskite core-shell nanocrystals by surface segregation effect. Small.2021, 2104399.
12. J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai*, M. Zhu*, Y.-F. Han*. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120581.
13. X. Tang#, Y. Lou#, R. Zhao, B. Tang, W. Guo, Y. Guo, W. Zhan, Y. Jia, L. Wang*, S. Dai*, Y. Guo. Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chem. Eng. J. 2021, 418, 129398.
14. L. DeRita#, J. Resasco#, S. Dai#, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher*. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746-751.
15. S. Dai, J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan1, T.-Y. Chen*. Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 2019, 10, 440.
16. S. Dai#, T.-H. Huang#, X. Yan, C.-Y. Yang, T.-Y. Chen, J.-H. Wang*, X. Pan*, K.-W. Wang*. Promotion of ternary Pt−Sn−Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals.ACS Energy Lett. 2018, 3, 2550−2557.
17. S. Dai, Y. You, S. Zhang, W. Cai, M. Xu, L. Xie, R. Wu, G. W. Graham, X. Pan*. In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles.Nat. Commun. 2017, 8, 204.
18. S. Dai, Y. Hou, M. Onoue, S. Zhang, W. Gao, Xingxu Yan, G. W. Graham, R. Wu, X. Pan*. Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy. Nano Lett. 2017, 17, 4683−4688.
19. T. Avanesian#, S. Dai#, M. J. Kale#, G. W. Graham, X. Pan*, P. Christopher*.Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 2017, 139, 4551−4558.
20. S. Dai#, S. Zhang#, M. B. Katz#, G. W. Graham, X. Pan*. In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catal. 2017, 7, 1579−1582.