|
陈建富博士 特聘副研究员,硕士生导师 办公室:实验十四楼305室 Email: jfchen@ecust.edu.cn ORCID:https://orcid.org/0000-0002-0815-2581 招生专业:工业催化
教育及工作经历: 2007.9-2011.7, 华东理工大学,应用化学(有机),本科 2011.9-2016.9, 华东理工大学,工业催化,博士研究生 2017.1-2019.5, 华东理工大学,师资博士后 2019.5-至今, 华东理工大学,计算化学中心、工业催化研究所,特聘副研究员
主要研究方向及成果: 主要从事计算化学和理论催化研究,重点围绕环境/能源相关的催化剂活性的筛选和调控以及动力学方面的理论研究,发表SCI 论文期刊论文30余篇,其中以第一作者或通信发表包括Acc. Chem. Res.、JACS、Angew. Chem. Int. Ed.、Nature Commun.、ACS Catal.、Chem. Sci.、J. Catal.、Chin. J. Chem.等国际知名期刊论文17篇。同时开发了高效稳定的催化反应微动力学分析程序CATKINAS(https://www.catkinas.com)。
主要科研项目: 国家自然科学基金委员会,青年基金,2018-01至2020-12,26万,结题,主持 科学技术部,国家重点研发计划项目,2022-01至2026-12,2000万元,在研,子课题骨干 科学技术部,国家重点研发计划项目,2018-05至2023-04,1360万元,在研,子课题骨干 国家自然科学基金委员会,重大研究计划,2021-01至2023-12,1400万,在研,子课题骨干 中国博士后科学基金委员会,第61批面上资助,2017-09至2019-01,5万,结题,主持 校特聘副研究员岗位配套经费,2019-2022,50万元,在研,主持。
代表性成果: JF Chen; Y Mao; HF Wang*; P Hu*, Reversibility iteration method for understanding reaction networks and for solving microkinetics in heterogeneous catalysis. ACS Catalysis 2016, 6 (10), 7078-7087 JF Chen; Y Mao; HF Wang*; P Hu*, Theoretical study of heteroatom doping in tuning the catalytic activity of graphene for triiodide reduction. ACS Catalysis 2016, 6 (10), 6804-6813 JF Chen#; Y Mao#; HF Wang*; P Hu*, A Simple Method To Locate the Optimal Adsorption Energy for the Best Catalysts Directly. ACS Catalysis 2019, 9 (3), 2633-2638 WB Xie, JY Xu, JF Chen*, Haifeng Wang*, and P. Hu*, Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling, Accounts of Chemical Research 2022, 55(9), 1237–1248 SM Lu#; JF Chen#; YY Peng#; Ma, Wei; H Ma; HF Wang; P Hu; YT Long*, ; Understanding the Dynamic Potential Distribution at the Electrode Interface by Stoch astic Collision Electrochemistry,Journal of the American Chemical Society 2021, 143(32): 12428-12432 L Qian#; JF Chen#; YH Li; L Wu; HF Wang; AP Chen; P Hu; LR Zheng*; HG Yang*, Orange Zinc Germanate with Metallic Ge-Ge Bonds as a Chromophore‐Like Center for Visible-Light-Driven Water Splitting. Angewandte Chemie 2015, 127 (39), 11629-11633 H Ma#; JF Chen#; HF Wang; P Hu; W Ma*; YT Long*, Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Nature Communications 2020, 11 (1), 1-9 JF Chen; ML Jia; HF Wang*; P Hu, CATKINAS: A large‐scale catalytic microkinetic analysis software for mechanism auto‐analysis and catalyst screening. Journal of Computational Chemistry 2021, 42 (5), 379-391 JF Chen#; ML Jia#; HF Wang*; P Hu, SSIA: A sensitivity-supervised interlock algorithm for high-performance microkinetic solving,The Journal of Chemical Physics 2021, 154, 024108 JF Chen#; ML Jia#; JL Wang; P Hu; HF Wang*; Breaking through the Peak Height Limit of the Volcano-Shaped Activity Curve for Metal Catalysts: Role of Distinct S urface Structures on Transition Metal Oxides,Journal of Physical Chemistry C 2021, 126(1): 183–191 CX Guo, Y Mao, ZH Yao, JF Chen*; P Hu*, Examination of the key issues in microkinetics: CO oxidation on Rh(111),Journal of Catalysis 2019, 379, 52-59 XT Sun; JF Chen*; P Hu*, General trends in Horiuti-Polanyi mechanism vs non-Horiuti-Polanyi mechanism for water formation on transition metal surfaces, Chinese Journal of Catalysis 2020, 41(2), 294-301 J Xing#; JF Chen#; YH Li; WT Yuan; Y Zhou; LR Zheng; HF Wang*; P Hu; Y Wang; HJ Zhao; Y Wang; HG Yang*, Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chemistry-A European Journal 2014, 20 (8), 2138-2144 W Ma#; H Ma#; JF Chen#; YY Peng; ZY Yang; HF Wang; YL Ying; H Tian*; YT Long*, Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chemical science 2017, 8 (3), 1854-1861 C Peng; JF Chen*; HF Wang*; P Hu, First-Principles Insight into the Degradation Mechanism of CH3NH3PbI3 Perovskite: Light-Induced Defect Formation and Water Dissociation. The Journal of Physical Chemistry C 2018, 122 (48), 27340-27349 BH Zhang#, JF Chen#, GS Wua, Y Guo, HF Wang*, Revealing the boosting role of NO for soot combustion over CeO2(111): A first-principles microkinetic modeling,Molecular Catalysis 2021, 509(1):111582 B Zhang#; NN Zhang#; JF Chen#; Y Hou; S Yang; JW Guo; XH Yang; JH Zhong; HF Wang*; P Hu; HJ Zhao; HG Yang*, Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms. Scientific reports 2013, 3, 3109 D Wang#; T Sheng#; JF Chen; HF Wang*; P Hu*, Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nature Catalysis 2018, 1 (4), 291-299 H Ma#; W Ma#; JF Chen; XY Liu; YY Peng; ZY Yang; H Tian*; YT Long*, Quantifying Visible-Light-Induced Electron Transfer Properties of Single Dye-Sensitized ZnO Entity for Water Splitting, Journal of the American Chemical Society 2018, 140 (15), 5272–5279 HY Yuan; JF Chen; HF Wang*; P Hu, Activity trend for low-concentration NO oxidation at room temperature on rutile-type metal oxides. ACS Catalysis 2018, 8 (11), 10864-10870 ZZ Lai; JF Chen; ML Jia; P Hu; HF Wang* ; Universal Skeleton Feature of the Three-Dimensional Volcano Surface and the Thermodynamic Rule in Locating the Catalyst in Heterogeneous Catalysis,ACS Catalysis 2021, 12(1): 247-258 ZZ Lai, NL Sun, JM Jin, JF Chen, HF Wang*, and P Hu*, Resolving the Intricate Mechanism and Selectivity of Syngas Conversion on Reduced ZnCr2Ox: A Quantitative Study from DFT and Microkinetic Simulations,ACS Catalysis 2021, 11(21):12977-12988 ZJ Chen; Y Mao; JF Chen; HF Wang*; YD Li; P Hu*, Understanding the dual active sites of the FeO/Pt(111) interface and reaction kinetics: density functional theory study on methanol oxidation to formaldehyde. ACS Catalysis 2017, 7 (7), 4281-4290 C Peng; JF Chen; HF Wang*; P Hu*,Molecular Adsorption Kinetics: Nonlinear Entropy–Enthalpy Loss Quantified by Constrained AIMD and Insights into the Adsorption-Site Determination on Metal Oxides,Journal of Physical Chemistry C 2021, 125(20), 10974–10982 HY Yuan; NN Sun; JF Chen; JM Jin; HF Wang*; P Hu, Insight into the NH3-Assisted Selective Catalytic Reduction of NO on β-MnO2(110): Reaction Mechanism, Activity Descriptor, and Evolution from a Pristine State to a Steady State. ACS Catalysis 2018, 8 (10), 9269-9279. C Zhou, JY Zhao, PF Liu, JF Chen, S Dai, HG Yang, P Hu, HF Wang*, Towards an object-oriented design of active hydrogen evolution catalysts on single-atom alloys,Chemical Science, 2021, 12, 10634-10642 Y Mao; JF Chen; HF Wang*; P Hu*, Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis. Chinese Journal of Catalysis 2015, 36 (9), 1596-1605 J Xing#; HB Jiang#; JF Chen; YH Li; L Wu; S Yang; LR Zheng; HF Wang*; P Hu; HJ Zhao; HG Yang*, Active sites on hydrogen evolution photocatalyst. Journal of Materials Chemistry A 2013, 1 (48), 15258-15264 HY Yuan; JF Chen; YL Guo; HF Wang*; P Hu, Insight into the Superior Catalytic Activity of MnO2 for Low-Content NO Oxidation at Room Temperature. The Journal of Physical Chemistry C 2018, 122 (44), 25365-25373 JM Jin; JF Chen; HF Wang*; P Hu, Insight into room-temperature catalytic oxidation of NO by CrO2 (110): A DFT study. Chinese Chemical Letters 2019, 30 (3), 618-623 JW Zhang; JF Chen; P Hu*; HF Wang*, Identifying the composition and atomic distribution of Pt-Au bimetallic nanoparticle with machine learning and genetic algorithm. Chinese Chemical Letters 2020, 31 (3), 890-896 DM Chen, JW Zhang; JF Chen; P Hu; HF Wang*,Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning,Chinese Journal of Chemistry 39(11), 3029-3036 D Wang; F Li; JF Chen; HF Wang; XM Cao; P Hu; XQ Gong*, Computational Simulation of Trapped Charge Carriers in TiO2 and Their Impacts on Photocatalytic Water Splitting, Computational Photocatalysis: Modeling of Photophysics and Photochemistry at Interfaces, ACS Symposium Series 2019, Vol. 1331, Chapter 4, pp 67-100
|
|